AQUACULTURE FOOD SAFETY CONTROL IN VIETNAM

Nguyen Nhu Tiep
NAFI QAD/MARD-Vietnam
SUMMARY

1. Overview on Vietnam fishery production and trade
2. Aquaculture food safety concerns
3. Solutions to food safety concerns in aquaculture supply chain
4. Conclusions
Overview on Vietnam fishery production and trade

Potential of Vietnam’s fishery production

- Coastal line of 3260 kms, spreading more than 15 latitudes.
- Exclusive marine economic zone of more than 1 million km².
- Aquaculture fresh water and brackish water of 1 million hectares
- Main aquaculture species:
 - Catfish (Tra, basa)
 - Black tiger shrimp, white shrimp
Overview on Vietnam fishery production and trade

- Bivalve mollusks: clam, cockles...
- Tilapia, scampi, mud crabs, snake head, carps (common, grass, silver), rainbow trout, cobia, grouper, snail...
- Seaweed (Gracilaria asiatica; Kappaphycus alvarezii...)

- FAO’s ranking for aquaculture
 - In 2003, pertaining production, Vietnam stood fifth after China, India, Thailand, Indonesia.
 - In 2005, pertaining export value Vietnam stood third after China, India
Overview on Vietnam fishery production and trade

a. Fishery production and export turnover 1990-2007

Source: Annual report of the Ministry of Fisheries
Overview on Vietnam fishery production and trade

<table>
<thead>
<tr>
<th>Item</th>
<th>2009</th>
<th>First 6 months of 2010</th>
<th>Estimated 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catching production (tons)</td>
<td>2,277</td>
<td>1,176</td>
<td>2,200</td>
</tr>
<tr>
<td>Aquaculture Production (tons)</td>
<td>2.569</td>
<td>1.245</td>
<td>2,600</td>
</tr>
<tr>
<td>Export value (Mil. USD)</td>
<td>4,250</td>
<td>2,000</td>
<td>4,800</td>
</tr>
</tbody>
</table>
Overview on Vietnam fishery production and trade

Source: Annual Report of the Ministry of Fisheries
Overview on Vietnam fishery production and trade

c. Importing markets

<table>
<thead>
<tr>
<th>Year</th>
<th>Japan</th>
<th>US</th>
<th>EU</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>32%</td>
<td>20%</td>
<td>5%</td>
<td>43%</td>
</tr>
<tr>
<td>2003</td>
<td>27%</td>
<td>33%</td>
<td>6%</td>
<td>34%</td>
</tr>
<tr>
<td>2006</td>
<td>25.3%</td>
<td>20%</td>
<td>21.6%</td>
<td>33.1%</td>
</tr>
<tr>
<td>2007</td>
<td>21.1%</td>
<td>20.4%</td>
<td>25.5%</td>
<td>34%</td>
</tr>
</tbody>
</table>
Bad feeding management

Abuse of chemicals & vet. drugs

Not proper waste water treatment

Disease outbreak
- Abuse of chemicals for ponds preparation/water treatment
- Abuse vet. drugs/not respect withdrawal time
- Illegal use of banned chemicals and vet.drugs
- Pathogens contaminated by poor inlet/outlet water treatment and post harvest practices
Food safety concerns

<table>
<thead>
<tr>
<th>Year</th>
<th>Importing countries</th>
<th>Product</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EU</td>
<td>Shrimp</td>
<td>Destroy/reject of consignment contaminated with chloramphenicol</td>
</tr>
<tr>
<td>2001</td>
<td>US, Canada</td>
<td>Shrimp, crab meat</td>
<td>Reject of consignment contaminated with chloramphenicol</td>
</tr>
<tr>
<td></td>
<td>Importing countries</td>
<td>Seafood</td>
<td>Reject of consignment contaminated with pathogen (salmonella, Vibrio Cholera…) or heavy metals, biotoxins…</td>
</tr>
<tr>
<td>Year</td>
<td>Country</td>
<td>Product</td>
<td>Reaction</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>2003</td>
<td>EU, US, Canada</td>
<td>Shrimp</td>
<td>reject of consignment contaminated with Nitrofurans</td>
</tr>
<tr>
<td>2003</td>
<td>EU</td>
<td>Pansies/Basa</td>
<td>reject of consignment contaminated with malachite green</td>
</tr>
<tr>
<td>2004</td>
<td>US Canada,</td>
<td>Aqua. food</td>
<td>reject of consignment contaminated with Fluoroquinolones</td>
</tr>
<tr>
<td>2006</td>
<td>Japan</td>
<td>Shrimp</td>
<td>reject consignment contaminated with CAP, Nitrofurans</td>
</tr>
<tr>
<td>2009</td>
<td>Japan, EU</td>
<td>Pansies/Basa</td>
<td>reject of consignment contaminated with trifuraline</td>
</tr>
</tbody>
</table>
Strategy for reduction/elimination of pathogen and chemical residue

1. Application of GAqP/BMP, GMP/GHP and HACCP in aquaculture production chain in Vietnam

<table>
<thead>
<tr>
<th>At farm level</th>
<th>BMP/GAqP</th>
</tr>
</thead>
<tbody>
<tr>
<td>At fishing vessels, fish landing sites, first sale markets, fish collection and/or small scale pre-processing (preparation) facilities</td>
<td>GMP/GHP or SSOP</td>
</tr>
<tr>
<td>At large scale fish preparation and fish processing facilities</td>
<td>HACCP based QA program</td>
</tr>
</tbody>
</table>
Activities conducted and implementation status of BMP/GAqP in aquaculture

1. Purpose of BMP/GAqP application:

1. Effective prevention of disease: Reduce and successfully manage disease

2. Ensuring safe food: free of pathogens, residues of antibiotics, chemicals & other contaminants...

3. Reduction of environment affection (no cause mangrove forest destruction, land salinity, water resource pollution...
Activities conducted and implementation status of BMP/GAqP in aquaculture

Differences of BMP, GAqP:

- BMP: applicable for small scale farms with not proper infrastructure (lack of investment). Core requirements focused on better management practices (water, feed, chemicals & vet.drugs use, harvest practices). Purpose: Reduction of disease outbreak and food safety

- GAqP: applicable for farms with proper infrastructure. Requirements are comprehensive including also pond&inlet water preparation, waste water treatment.... Purpose: Reduction of disease outbreak and food safety and environment affection
Activities conducted and implementation status of BMP/GAqP in aquaculture

- Preparation for implementation of BMP/GAqP
- Cooperation with USFDA on research of microbial contamination of shrimp farm as base for GAqP development; on GAqP training
- Pilot design and implementation of BMP, GAqP for shrimp hatchery and grow-out farm
- Development of training materials and conducting training of trainers (extension workers and local authorities)
- On farms training of farmers on BMP/GAqP
Activities conducted and implementation status of BMP/GAqP in aquaculture

• Pilot application of GAqP at aquaculture farms/cooperatives in different ecological key aquaculture regions

• BMP was pilotly applied by NACA/SUMA(FSPS1) in black tiger hatchery in Khanh hoa prov. and grow-out farms in Nghe An province

• BMP/GAqP were implemented by huge number of farmers after being trained and guided for application of BMP/GAqP.

• BMP/GAqP certification was limited due to high fee and lack of promotion of the certified product
Activities conducted and implementation status of BMP/GAqP in aquaculture

- Private certification
 - Basa/tra farms/collectives applied and were certified to SQF by SGS…
 - Basa/tra and shrimp farms were certified to BAP by GAA…
 - Basa/tra farms were certified to GlobalGAP by third party certifiers
 - Shrimp farming cooperatives were certified to organic shrimp standard by Natureland…
 - …..
 - Results: high fee, unknown benefits (better sale, better price?)
Activities conducted and implementation status of GMP/GHP and HACCP

- Preparation for application of GMP/GHP, HACCP
 - Oversea training/workshop for experts
 - NMFS, FAO, ASEAN-Canada Project’s trainings of trainer on basic HACCP and HACCP audit
 - Development of National HACCP based QA program training materials
 - National HACCP based QA program and HACCP audit training of trainers
 - HACCP based QA program training of Managers and QC/HACCP team of fish processing facilities
 - Development of GMP/GHP or SSOP manual/training material for pre-processing establishments (PPE) and traditional processing establishments (TPE)
 - Training managers of PPE and TPE
Major considerations and issues for implementation of GMP/GHP and HACCP

- HACCP based QA Program consist of GMP, SSOP & HACCP plan
- HACCP based QA program is suitable for large size processing establishment
- HACCP based program is well implemented in fish processing establishments, but many especially small scale pre-processing establishments which supply semi-products to those fish processing ones have not implemented HACCP based program yet, so it has brought the risks to the processed ones.
Major considerations and issues for implementation of GMP/GHP and HACCP

- GMP/SSOP or GHP are suitable for small scale fish pre-processing establishments (PPE) and traditional processing establishments (TPE) because:
 - PPE and TPE are SMEs having difficulties to apply HACCP due to economic and technical constraints
 - GMP and GHP/SSOP could ensure the food safety assurance principle “as clean, quick and cold as possible”
 - GMP and GHP/SSOP as a first step so the managers of PPE and TPE to get involved and experience towards the HACCP application
Major considerations and issues for implementation of GAqP, GMP/GHP and HACCP

- Constraints faced in implementation of GAqP, GMP/GHP and HACCP
- Poor coordination between relevant authorities/stakeholders. Lack of enforcement to comply the regulation.
- Lack of human and financial resources.
- Lack of awareness, understanding of HACCP of relevant stakeholders including fish processors especially for SME’s
- Lack of proper education and training method on the part of processors and traders. Extension trainings/workshops/seminars are needed
2. Control measures for chemical residues in fisheries

a. Antibiotics (i.e. Chloramphenicol (CAP), Nitrofuran (NTr), Malachite Green (MG)) had been popularly used for farmed fish disease treatment.

b. CAP had been used by some ice producers as additive in ice – water for preservation.

c. Workers had used hand-cream containing CAP

a and b are principal causes of chemical residue in Vietnamese fishery products
1. By Government authorities:

- Promulgating the list of 17 banned and 34 restricted antibiotics in fishery production, in compliance with regulations of the EU, the US, Canada, Japan and other importing countries.

- Strictly controlling feed and vet drug producers, feed and vet drug importers and exporters. It is regulated to print statement “free of banned antibiotics” on labels of any products, in compliance with former Ministry of Fisheries regulations (now the Ministry of Agriculture and Rural Development)”
Applied measures to control antibiotics and chemicals residues in fisheries

- Improve testing capacity: Allow government labs. to purchase LC-MS/MS and HPLC for testing antibiotic residues.

- Constantly disseminating information on prohibited antibiotics on mass media (central and local televisions, radios and newspapers).

- Investing in research on production of vaccine for tra/basa catfish and immune-enhancing bioproducts for shrimp.
Applied measures to control antibiotics and chemicals residues in fisheries

2. By competent authorities

- Sending analysts to trainings in Europe (the Netherlands, France, Germany), America (FDA, CFIA), Asia (Singapore, Japan, Korea).
- Labs. participation in proficiency tests on antibiotic residues with foreign reference laboratories (England, Newzeland).
- Since 2001, annually organizing education and training of farmers and processing establishments.
- Since 2001, annually distributing hundred thousands of leaflets and posters to stakeholders in fishery production chain.
Applied measures to control antibiotics and chemicals residues in fisheries

2. By competent authorities

- Testing fishery consignments intended for export to markets where antibiotic residues have been detected in.
- Guiding the application of Good Aquaculture Practices - GAqPs or BMPs.
- Validating test kits for CAP and other chemicals for preservation in farms, fishing vessels and transporters.
3. By Vietnam Fisheries Society (VINAFIS)

- In collaboration with NAFIGQAD, disseminating information on the impact of use of prohibited antibiotics to members.
- Training members on the application of GAqP and BMPs
- Co-organizing the contest on fishery quality and safety
Applied measures to control antibiotics and chemicals residues in fisheries

4. By Vietnam Association of Seafood Exporters and Producers (VASEP)

- Training managers of establishments on risk assessment in whole production chain and raw material supply system so that the latter could train their suppliers on how to keep product free of residue.
- Encouraging fishery processing establishments to invest equipment for raw material testing.
- In case of detection of antibiotic residues, with the implemented traceability system, establishments could define causes of contamination and apply corrective actions.
5. Other stakeholders in fishery production chain

- Being aware of impact and loss in case of antibiotic residues detection.
- Actively applying GAqP/BMPs in aquaculture, GMP in feed production and handling of fishery products on fishing vessels.
- Improve HACCP based program for strengthening control of pathogens and residue in raw materials and during production chain
Difficulties in veterinary medicines residue control

1. Lack of information on importing countries new or revised regulations/standards especially the time of enforcement so capacity building is not timely able to respond to

2. Zero tolerance policy was applied differently from country to country even inside of EU. The MRPL policy is a progress however is based on detection limit of machinery rather than on risk assessment?

3. Very difficult for developing countries to invest very expensive machinery LC/MS/MS for residue detection as MRPL required by EC regulation

4. List of banned substances is different from country to country cause difficulties for exporting especially developing countries (for exp. US sets zero tolerance for fluoroquinolone, EU still allow restrictive use of this group of antibiotics).
Improvement of food safety

- More 600 intensive farms are applying GAqP
- Residue monitoring program show the reduction of samples contaminated with banned substances (0.3% in 2007 vs 0.7% in 2006)
- Surveillance sampling of fishery products show significant reduction of samples contaminated with pathogen or chemical residues
- Reducing number of consignments alerted by importing countries due to contamination with residues of banned substances
- Increase confidence of safe seafood to local consumers: Consumption of seafood per capita increase from 15 kg/person in 90’s years to 21 kg/person in 2008
Recognition/agreement/MOU with importing countries

<table>
<thead>
<tr>
<th>No</th>
<th>Country</th>
<th>Recognition/agreement/MOU</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>EU</td>
<td>Decision 2004/267/EC of EC recognising equivalency of Vietnam fishery production and export and NAFIQAD</td>
</tr>
<tr>
<td>02</td>
<td>South Korea</td>
<td>Agreement on cooperation in food safety control of seafood import-export</td>
</tr>
<tr>
<td>03</td>
<td>Canada</td>
<td>Agreement for inspection and certification of residues for seafood exported to Canada</td>
</tr>
<tr>
<td>04</td>
<td>China</td>
<td>Agreement on cooperation in food safety control of seafood import-export</td>
</tr>
<tr>
<td>04</td>
<td>Thailand</td>
<td>MOU on technical cooperation in aquatic animal health food safety control</td>
</tr>
<tr>
<td>05</td>
<td>Cambodia</td>
<td>MOU on technical cooperation in aquatic animal health food safety control</td>
</tr>
</tbody>
</table>
Number of approved Processing establishments

<table>
<thead>
<tr>
<th>No/Year</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Approved by NAFIQAD</td>
<td>386</td>
<td>432</td>
<td>457</td>
</tr>
<tr>
<td>2 Approved for export to EU</td>
<td>245</td>
<td>303</td>
<td>331</td>
</tr>
<tr>
<td>3 Approved for export to South Korea</td>
<td>386</td>
<td>432</td>
<td>452</td>
</tr>
<tr>
<td>4 Approved for export to China</td>
<td>386</td>
<td>432</td>
<td>450</td>
</tr>
<tr>
<td>5 Approved for export to Russia</td>
<td>11</td>
<td>38</td>
<td>33</td>
</tr>
<tr>
<td>6 Registered for testing and certification for Canada</td>
<td>220</td>
<td>232</td>
<td>246</td>
</tr>
</tbody>
</table>
Activities conducted and implementation status of GAP, GMP/GHP and HACCP

<table>
<thead>
<tr>
<th>TT</th>
<th>Item</th>
<th>Total No inspected</th>
<th>Up to GMP/ GHP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>No % vs total No</td>
</tr>
<tr>
<td>4</td>
<td>PPE</td>
<td>1,258</td>
<td>568</td>
</tr>
<tr>
<td>5</td>
<td>Processing SME</td>
<td>3,068</td>
<td>544</td>
</tr>
</tbody>
</table>
Conclusions and recommendations

- Preventing prohibited antibiotics and giving up use thereof for fishery disease treatment should be continuously and tenaciously implemented.
- Guiding for the implementation of GAqP / BMPs in aquaculture and HACCP based program in whole production chain becomes principle preventive measures.
- Up to date, Vietnamese exported fishery products have been not detected with banned antibiotic residues or detected with a very low rate of 0.1% of total inspected consignments.
- Technical assistance to developing countries to update and prepare capacity to respond new/ revised regulation/ standards just after adoption
- New policy of zero tolerance application
- Harmonised list of banned substances is required (CODEX list)
Thank you !