

Analysis of Veterinary Drug Residues in China

Dr. Xionghai Yi (伊雄海)
Shanghai Entry-Exit Inspection and Quarantine Bureau
of The People's Republic of China
SEP. 10, 2014

Contents

- Profile of the institution
- Analysis of veterinary drugs
- The newly research findings

- The Technical Center for Animal, Plant and Food Inspection and Quarantine (AFTC) is one of the affiliated institutions of Shanghai Entry-Exit Inspection and Quarantine Bureau (SHCIQ).
- **Responsibilities:** Inspect the entry-exit foodstuffs, cosmetics and their products, and quarantine the animal and plant products.

Capacities

- State Key Laboratory (Shanghai) of Food Safety.
- Authorized reference laboratory of veterinary drugs
 (Triphenylmethanes, β-agonists, Resorcylic acid lactones and Steroids)
 by General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ).
- Coordinate PT's including Triphenylmethanes in animal feeds in 2013.

No.	2013-2014 PT's Project	Code	Result
1	Nitrofuran in shrimps	FAPAS PT02229	Satisfied
2	Chloramphenicol in milk	FAPAS PT1870	Satisfied
3	Trifluralin in fish meat	FAPAS PT0588	Satisfied
4	Antibiotics in egg	RILILT 1227295401	Satisfied
5	β-agonist pork	CNCA-13-A08	Satisfied

Personnel and Equipments

• 15 chemists and 35 technicians/assistants

• GC,GC-MS, GC*GC-MS, GC-QQQ, GC-QTOF; HPLC, HPLC-QQQ, HPLC-IT-TOF, HPLC-QTOF, HPLC-Oritrap; IRMS, ICP-MS, AAS, AFS, RT-IR, GPC, ASE, IC, etc.

Contents

- Profile of the institution
- Analysis of veterinary drugs
- The newly research findings

Regulations

• No. 193 Announcement from Ministry of Agriculture of China: The prohibited veterinary drugs and other chemicals in food animals.

• No. 235 Announcement from Ministry of Agriculture of China: The maximum residues limits of veterinary drugs in animals origin food.

Guidance on Method Validation

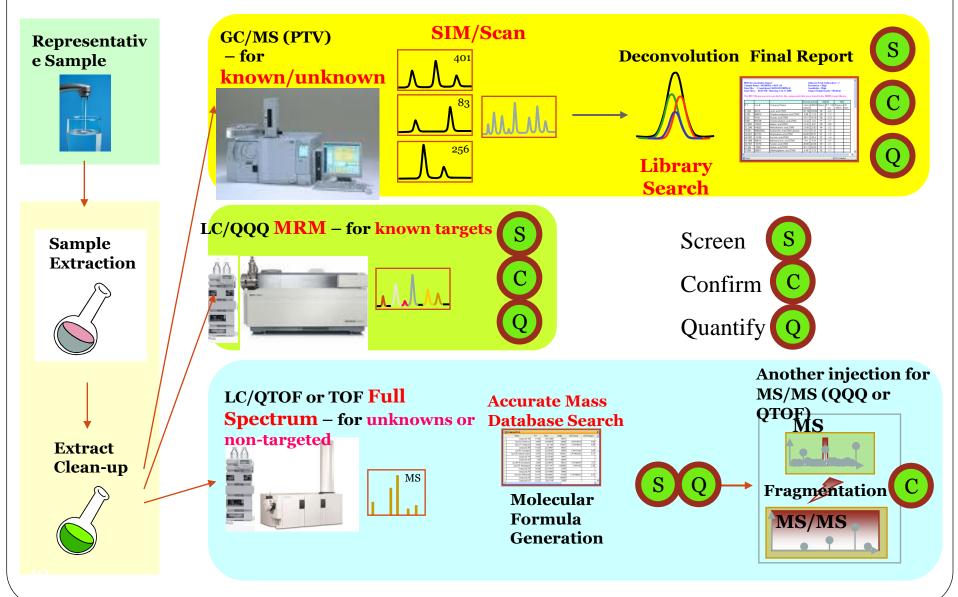
- GB/T 27404-2008 Criterion on quality control of laboratories-chemical testing of food.
- AQSIQ: The guidance of quality control in residue analysis (2002).

Reference:

- 657/2002/EC Implementing Coucil Directive 96/23/EC Concerning the performance of analytic methods and the interpretation of results.
- No.SANCO/10684/2009 Method validation and quality control procedures for pesticides residues analysis in food and feed.
- CRL guidelines for the valid ation of screening methods for residues of veterinary medicines.
- AOAC Guidelines for single labortory validation of analytical methods for tracelevel concentrations of organic chemicals.

The challenges in drug analysis

Diversity of the compounds


- More groups and classes
- Different physical/chemical properties (eg, polarity and pKa values)
- Parent drugs and metabolites

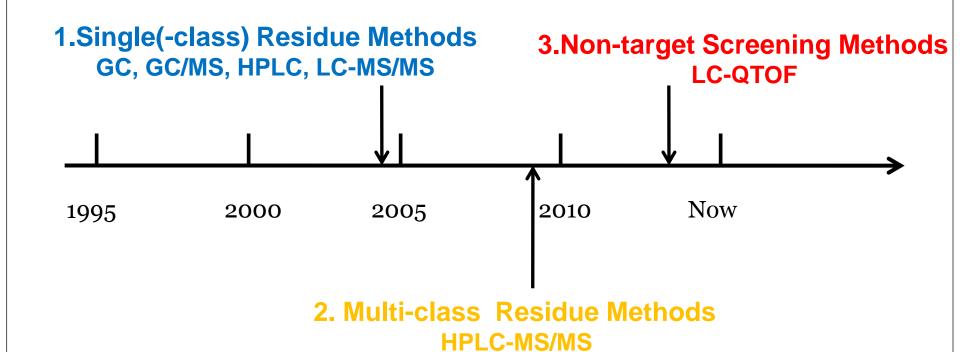
Complex matrices

- Matrix effect
- Coextracted matrix
- Extremely low part-per-billion levels

Workflows

The advantages of QQQ and QTOF

QTOF


- High resolution
- Accurate mass
- High scan speed
- Unknows in one injection
- High sensitive in Full scan

QQQ

- MS/MS mode
- Qualify and quantify both
- Low noise and high sensitive
- knows in one injection

Veterinary drug analysis

Methods Classification in Our Lab

Single(-class) Residue Methods

- SN/T 1979-2007 Determination of praziquantel residue in foodstuffs of animal origin for export--LC-MS/MS method
- SN/T 1777.2-2007 Determination of macrolide antibiotic residues in foodstuffs animal oigin for export--LC-MS/MS method
- SN/T2113-2008 Determination of tranquillizer residues in foodstuffs of animal origin for export--LC-MS/MS method
- SN/T 2190-2008 Determination of non-steroidal anti-inflammatory drugs residue in foodstuffs of animal origin for export--LC-MS/MS method
- SN/T 2220-2008 Determination of benzodiazepine residues in foodstuffs of animal origin for export--LC-MS/MS method
- SN/T 2222-2008 Determination of glucocorticosteroids residues in foodstuffs of animal origin for export--LC-MS/MS method
- More than 100+ other SRMs

Multi-class Residue Methods

- SN/T 2624-2010 Determination of basic veterinary drugs residues in foodstuffs of animal origin for export--LC-MS/MS method
- SN/T 2443-2010 Determination of multi-residues of acidic and neutral drugs in foodstuffs animal origin for import and export--LC-MS/MS method
- SN/T 3235-2012 Determination of multi-groups of banned drug residues in foodstuffs of animal origin for export-LC-MS/MS method

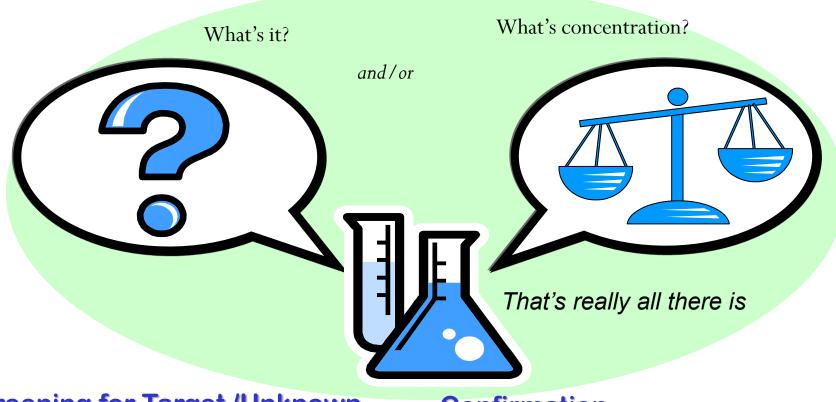
•

SN/T 2624-2010

- 76 basic veterinary drugs
- 6 classes (β-agonist, Benzodiazepine, Sulfonamide, Benzimidazole, Triphenylmethane, Nitroimidazole)
- Acetonitrile and Citrate buffer Extraction
- strong cation exchange SPE Cleanup
- LC-MS/MS in MRM mode

SN/T 2443-2010

- 64 acidic and neutral drugs
- 6 classes (corticosteroid, progestin, Androgens, hypoglycemic and non-steroidal anti-inflammatory drug)
- Acetonitrile extraction
- *n*-hexane Solvent exchange cleanup
- LC-MS/MS in MRM


SN/T 2235-2012

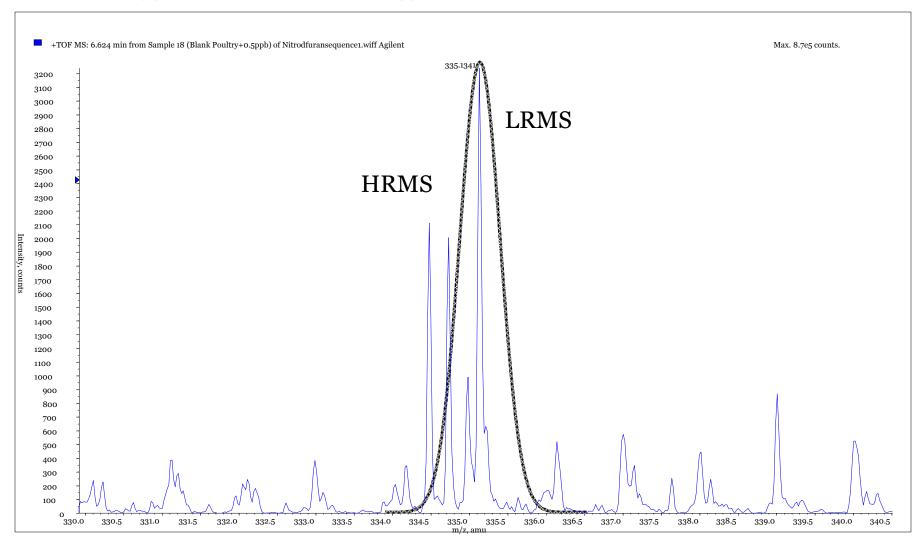
- 44 banned individual drugs
- 9 classes (β-agonist, Androgen, Glucocoritcoid, Estrogen, Nitroimidazols, Resorcylic acid lactone, Triphenylmethane, Sedative and Cloramphenicol)
- Ammonia acetonitrile extraction
- QuEChERS cleanup
- LC-MS/MS in MRM

Non-target Screening Method

Lab SOP: Qualitative Screening and Quantitative
 Determination of 100+ Veterinary Drugs in Food Using
 High Performance Liquid Chromatography Tandem
 Quadrupole Time-Of-Flight Mass Spectrometry

What do we want from TOF/Q-TOF analysis

Screening for Target /Unknown

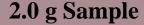


Identification with AM(RT) or PCDL

Confirmation with MS/MS

LRMS v.s. HRMS

Contents

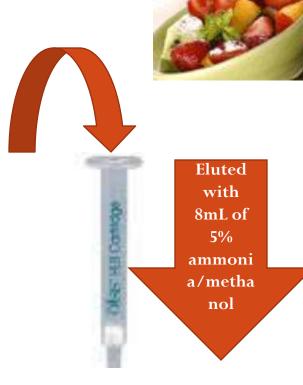

- Profile of the institution
- Analysis of veterinary drugs in china
- The newly research findings

Veterinaries studied (total 105) and their MRLs

Name	Number	Maximum residue levels		
		China	EU	
Beta agonist	14	Banned(MRPL)	Banned(MRPL)	
Benzimidazole	13	60 μg/kg(Mebendazole)	60 μg/kg(Mebendazole)	
Benzodioxode	19	Banned(MRPL)	Banned(MRPL)	
Nitroimidazole	10	100 μg/kg	100 μg/kg (Thiabendazole)	
Sulfonamide	19	100 μg/kg	100 μg/kg	
Triphenylmethane	4	Banned (MRPL)	Banned (MRPL)	
Quinolone	14	10~200 μg/kg	$10\sim200~\mu g/kg$	
Tetracycline	5	100 μg/kg (chlortetracycline)	100 μg/kg (chlortetracycline)	
Sugar cortical	7	Banned (MRPL)	Banned (MRPL)	

Sample prepare

10mL 0.1% formic acid/acetonitrile, 5g anhydrous NaSO4


homogeneous, shake 10min

4000 rpm for 5 min

Extracted again by 10 mL 0.1%acid/acetonitrile, followed by 10 mL ethyl acetate

Evaporating at 40°C till dryness

reconstituted with 5mL of 5% ammonia/methanol

Collect all elution
(HLB functions:
Retain the interferences
and filtrate)

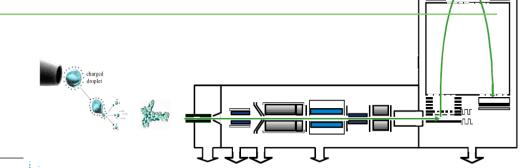
Method parameters— MS condition

Mass system : Q TOF MS Ion source : ESI

Nebulizer gas : Nitrogen Polarity : Positive/ Negative

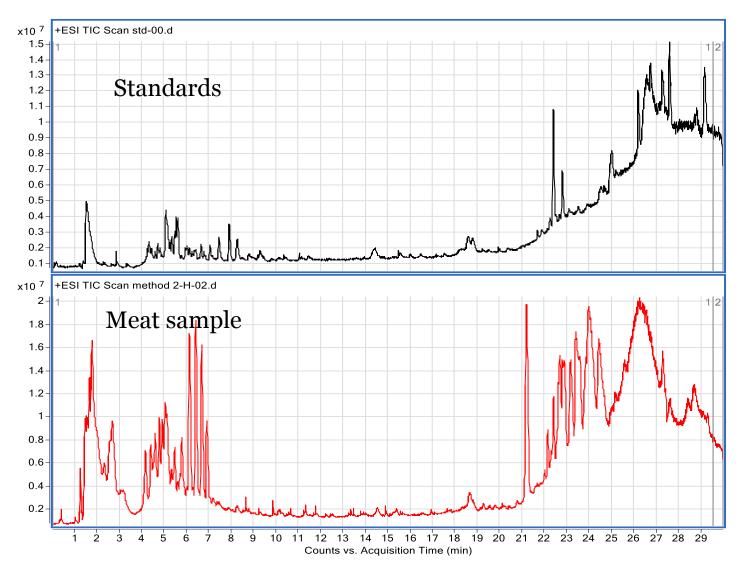
Resolution

Nebulizer pressure : 45 psi Ion spray voltage : 4500 V/4000 V

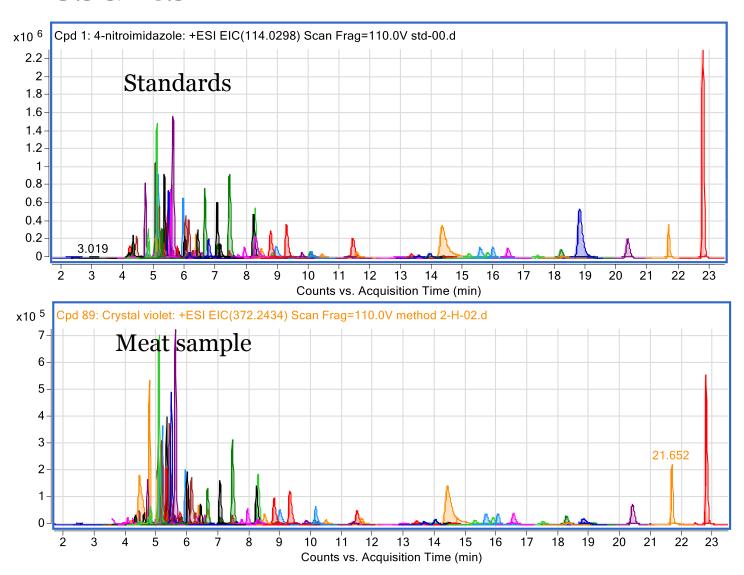

Drying gas temperature : 330 °C Drying gas flow rate :5L/min

Sheath Gas temp : 400 ℃ Sheath gas flow :10mL/min

Fragmentor : 110 V Nozzle voltage :0 V


: m/z 80-1050

Mass range


4G HR mode

Results

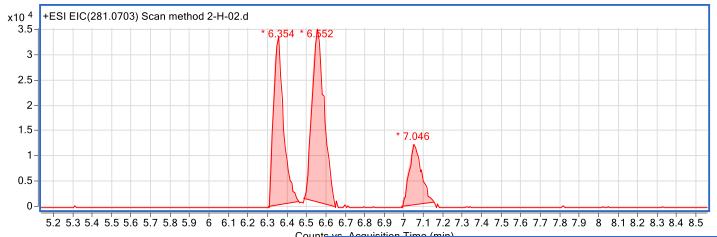
TIC of 105 veterinary drugs standards (5 ng/mL) and sample (5 μ g/kg)

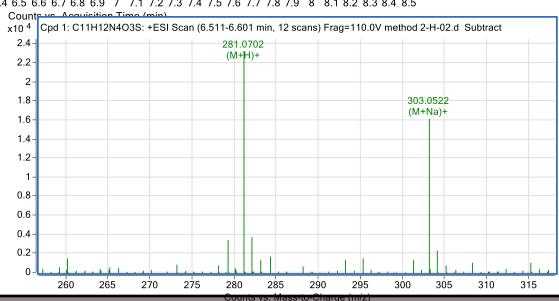
Results

Overlaid EIC of 105 veterinary drugs standards (5 ng/mL) and sample (5 μ g/kg)

Identification

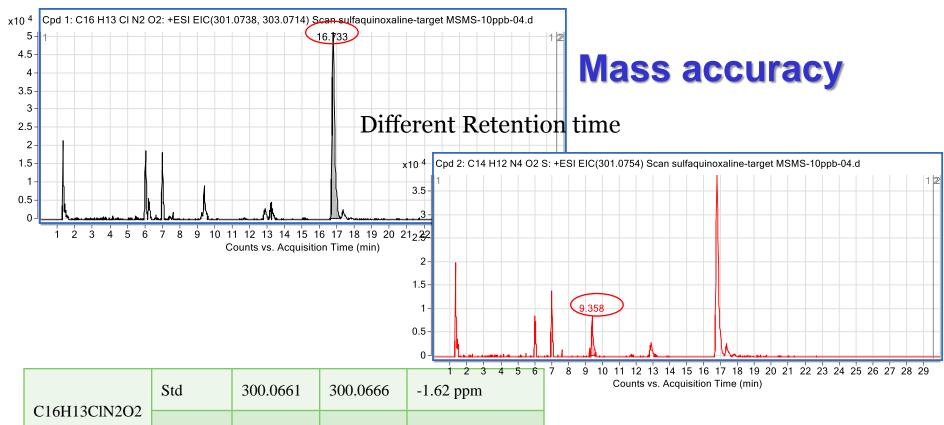
An analyte was considered positively identified when criteria were confirmed:

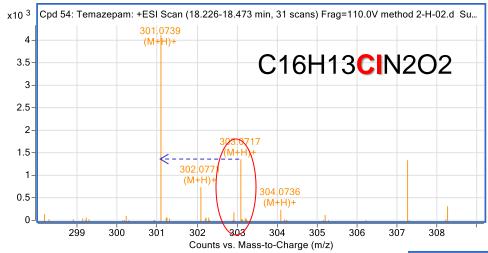

- the accurate mass deviation of two selected ions of each analyte was less than 5ppm.
- the ratio of the chromatographic retention time of the analyte to that of the same analyte in standard solution was within 2.5% tolerance.



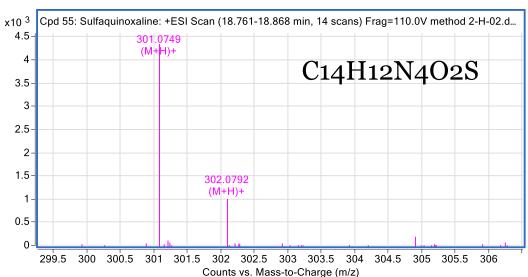
Identification of compounds with the same nominal mass

Group	Compound	Formula	Monoisotopic mass (Da)	Mass difference (ppm)	Identified by
1	Sulfameter	C11H12N4O3S	280.060301		Rt
	Sulfamethoxypridazine	C11H12N4O3S	280.060301	0	
	Sulfamonomethoxine	C11H12N4O3S	280.060301		
2	Temazepam	C16H13CIN2O2	300.06656	5 12	Rt and
	Sulfaquinoxaline	C14H12N4O2S	300.06810	- 5.13	isotope match

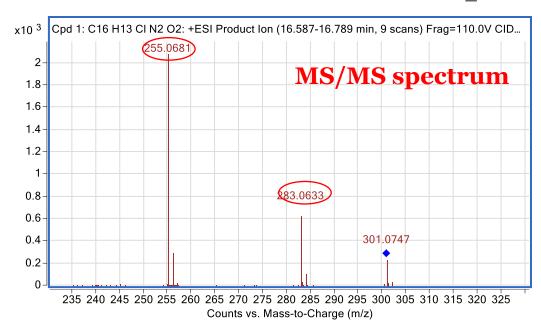


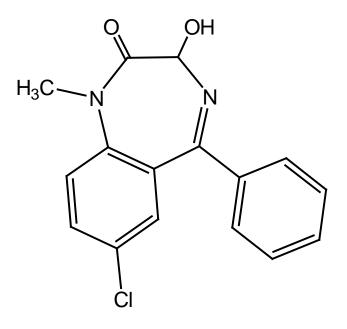

Compound	Formula	Rt
Sulfamethoxypyridazine	C11H12N4O3S	6.35 min
Sulfametere	C11H12N4O3S	6.55 min
Sulfamethazine	C11H12N4O3S	7.05 min

Temazepam (C16H13CIN2O2) and Sulfaquinoxaline (C14H12N4O2S)



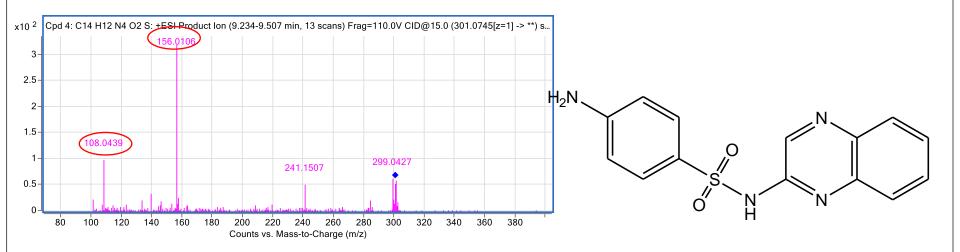
C16H13ClN2O2	Std	300.0661	300.0666	-1.62 ppm
C10H13CIN2O2	Meat	300.0666	300.0666	0.06 ppm
C14H12N4O2S	Std	300.0676	300.0681	-1.69 ppm
C14H12N4O28	Meat	300.0687	300.0681	-1.9 ppm


Temazepam (C16H13CIN2O2) and Sulfaquinoxaline (C14H12N4O2S)



Isotope match

Confirmation of Temazepam



H_HMS/MS Formula Details: Cpd1: C16H13CIN2O2-target msms temazepam and sulfaquionxacline-02d C

	m/z ∇	Formula	Abund%	Diff (ppm)	Loss Mass	Loss Formula
•	283.0633	C16 H12 CI N2 O	20.86	-0.2	18.0106	H2 O
	255.0681	C15 H12 CI N2	79.14	1.16	46.0055	C H2 O2

Information of Fragment ion

Confirmation of Sulfaquinoxaline

H	H _H MS/MS Formula Details: Cpd 4: C14H12N4O2S C14H12N4O2S							
	m/z 🛆	Formula	Abund%	Diff (ppm)	Loss Mass	Loss Formula		
	108.0439	C6 H6 N O	16.95	4.4	193.031	C8 H7 N3 O S		
	108.0439	C3 H10 N O S	16.95	35.59	193.0276	C11 H3 N3 O		
	156.0106	C6 H6 N O2 S	54.81	5.03	145.064	C8 H7 N3		
	156.0106	C9 H2 N O2	54.81	-16.57	145.0674	C5 H11 N3 S		
	241.1507		8.66					

Conclusion

- Recovery and repeatability. Results with a range from 41.1–120.9% (meat), 52.4–91.9% (milk), and 57.3–118.9% (egg), and the relative standard deviation was less than 20%.
- LODs and LOQs of all drugs ranged from 0.01 µg/kg to 5.96 µg/kg and from 0.04 µg/kg to 18.45 µg/kg, respectively.

